Pages

NASA starts testing a more precise landing technology

Thursday, 19 March 2015
NASA wants to visit celestial bodies we've never been to before, so it has started testing a precise landing system that will first be used for future trips to Mars. The engineers at Jet Propulsion Laboratory used a rocket called Autonomous Descent and Ascent Powered-flight Testbed (ADAPT) to perform two test flights back in December. ADAPT, by the way, was created as a reusable test rocket that launches and lands vertically. In both instances, it had to reach an altitude of 1,066 feet before it started its descent and the two-part landing system kicked in.
The first part, called the Terrain Relative Navigation technology, has a sensor named the Lander Vision System (LVS). It can maneuver a spacecraft to a precise location even without GPS by taking pictures of the terrain while descending. The system can then compare those photos to images it's saved onboard to determine where it is and touch down as close to the planned landing site as possible. This works in conjunction with the second part of the landing system, which is an algorithm called G-FOLD. That one does onboard calculations to determine which trajectories "obtain the maximum performance from every kilogram of propellant." And yes, the system can do all these by itself, with no human input.
This landing system is necessary if NASA plans to visit new planets, moons, asteroids or comets. See, for a spacecraft to be able to land on unfamiliar territory without touching down on rocky or dangerous terrain, it has to be able to find a good location on its own. The agency is hoping that this technology's the solution to that issue, though two successful tests probably aren't enough for NASA to start using it on actual missions just yet.


No comments:

Post a Comment